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ABSTRACT :

E -

An analytical calculation of the variance is performed,
in some simple cases, for standard least-squares estimators of track
parameters (accounting for independent measurement errors only) ;
comparison is made with optimal estimators (accounting also for scat-
tering errors, correlated between one point and the following ones).
A new method is proposed for optimal estimation : the points measured
on the track are included backwards, one by one, in the fitting
algorithm, and the scattering is handled locally at each step. The
feasability of the method is shown on real events, for which the geo-
metrical resolution is improved. The algorithm is very flexible and al-
lows fast programmation ; moreover the computation time is merely pro-
portional to the number of measured points, contrary to the other

optimal estimators.
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:

Les variances des estimateurs standard par moindres carrés des
paramétres d'une trace (qui ne tiennent compte que d'erreurs de mesure
indépendantes) sont calculées analytiquement dans quelques cas simples,
et comparées 3 celles des estimateurs optimaux (qui tiennent compte aus-—
si des erreurs dues 3 la diffusion, corré&lées entre un point et les
suivants). Une nouvelle méthode est proposée pour 1l'estimation optimale :
les points mesuré&s sur la trace sont inclus 1'un apré&s 1'autre, 3 par-
tir du dernier, dans 1'algorithme d'ajustement, et la diffusion est
traitée localement 3 chaque &tape. La faisabilité de la méthode est démon-—
trée sur des &vénements réels, pour lesquels la résolution géométrigque
est am&liore. L'algorithme est trds souple et se pr8te 3 une programma-
tion rapide ; en outre le temps de calcul est simplement proportionnel

au nombre de points mesurés, contrairement aux autres estimateurs optimaux.



1. INTRODUCTION :

Charged particles going through matter are affected by randem
deviations due to multiple scattering. The uncertainty on their initial
fitted parameters (position and momentum components) arises form two
contributions : on the one hand the contribution of the measurement
errors, which is a decreasing function of the number of measured points
on the other hand the contribution of the multiple scattering errors,
which cannot be reduced below some minimum values, because the detectors
contain at least a gas at atmospheric pressure, and some denser parts.
These scattering uncertainties become predominant for low momentum par-

ticles, or for very accurate measurements.

There are essentially two ways to perform a geometrical track

fit when the scattering errors are not negligible :

1} A standard fit takes only the measurement errors into ac-
count, and provides estimators for the track parameters and their co-
variance matrix (as resulting from the measurement errors only). Such
estimators are not optimal (some information is lost). Their actual
covariance matrix can be obtained by adding afterwards the multiple

gcattering contribution.

2) An optimal fit makes use of the full (m x n) covariamce
matrix of the n measurements (including multiple scattering, i.e. cor-
relation terms). This is usually realized by using the Gauss—-Markow

theorem, and needs then the inversion of this matrix (1) .

The precision of the estimators corresponding to both methods
was already compared by Drijard (2) by numerical evaluation, for the
curvature and angle parameters only. In this paper we give analytical
expressions of the covariance matrices, and we consider also pesition
parameters, because the kinematical resolution depends on the preci-

sion on these parameters when the tracks are extrapolated to a vertex.



In sect. 2 we calculate the matrices resulting from the
standard method in some simple cases, and we show that an increase
of the number of measured points may lead to an increasing error
on the parameters ; in sect. 3 we describe a recursive solution of
the optimal method, hopefully less expensive than the brute-force
matrix inversion involved im the Gauss-Markov method ; in sect. 4 we
determine recursively the optimal covariance matrix of the parameters
in the same cases as in sect. 2 in order to evaluate the gain in pre-
cision. In sect. 5 we present results obtained with real eventsfrom

OMEGA Spectrometer at C.E.R.N.

Let us recall the expression of the variance of the projec—
ted scattering angle for a particle of charge 2z , velocity v, momentum
p, after passing through £ radiation lengths :

2 . (K.2.2
Ao “‘(p.v) g

where K is about 15 MeV (with a correcting factor at low velocities).

The main point for our purpose is that for a given particle

with a given momentum, Aq2is proportional to ¢

2:_IHE_STANDARD FIT : EVALUATION_ OF THE_ERROR_MATRIX

2.1. General conventions :

We suppose that all measured points on the track are equi-
distant (interval 2), with the same precision, and that their number
n is big enough to replace the summations over the points by integra-—

tions (or equivalently to hold only the terms of highest degree in n.

We consider slightly curved tracks in an uniform vertical
magnetic field : in the absence of errors they would have a straight
vertical projection and a parabolic horizontal projection. These con-
ditions are often realistic, and our conclusions hold qualitatively

in more general cases.



In order to simplify the expressions, we replace the measu-~
red coordinates by their deviations from the theoretical ones (which
would be obtained without errors and scattering). If the estimators
are not biased, the mean value of the fitted parameters will then va-

nish, and their variances will come to their mean squared values.

2.2. Scattering at one point of the track

2.2.1. General notations

We suppose that the particle encounters matter con-

centrated at a distance Lo after the first measured point. Let no = Lo/%
. K.Z ]
be the number of points before Lo , and Ao? = (E—;Jz £ the variance

of the scattering angle @ in both vertical and horizontal directiomns.

The measured coordinates at abscissa Xi= il will be
m . . . . .
called yi for the horizontal projection (parabolic fit) and z?

the vertical one (straight fit). They can be expressed by

y@ = Oy, for i <€ no

i i
o _ (2.1)
yj Syj + (J=n.) £ « for j > n.
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m
and similarly for z,

5yi and Gzi are random variables of variance o2,

o is a variable of variance Aa®? . All of them are independent.
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The standard fit determines on the one hand the pa-
rameters Z and b (position at the first measured point and slope

in the vertical plane), and on the other hand Y, a and ¢ = L

R
(position and slope at the first point in the horizontal plane, and
curvature), as linear combinations of the measured coordinates, hence

of the independent wvariables 6zi(or dyi) and o .

Thus the variances of these parameters are the sum
of the measurement errors contribution and the scattering contribu-
tion, and we can calculate them separately. The same thing is true for

the sum of squared residuals, and then for the ¥2.

2.2,2, Straight line fit

From the equation of the trajectory

z = Z+ b x

t he parameters Z and b are given by the matrix equa-

tion :
bl r ox. Z z
. 1 DL
* = ' (2.2)
T x., I x.° b L Xx. zw
P T | P T
i i i

The inverse of the left-hand side matrix, multiplied
. . m .
by c? , is the covariance matrix V of the parameters in the absence

of scattering :

n*y |1 1 _ 1
n 2 3 208
Vo~ g2 = 12 g2
1122’ I'IBQ‘Z _ 1 ]
2 3 n’l n° 27




or, with L=nf (total measured length) :

m 4o? m 1207? 2
V = e . Vbb - [y R Vrznb - — 6L ( 2 R 3)
n nL? nlL

The ¥? has a well known mean value
<}(2>m = n-2 =~ n

If we consider now the of variable only, we obtain
for the right-hand side of (2.2)

" s o (n_no)z
)X z, = £ 0o I (i-ney = — £ o

i 1>n,

- 2
Fxa® =820 I i(immg) & B no)6(2n+n°) 2 o

i%1 ,
121,
(with, of course, n > no )

whence Z and b as functions of a :
- 2 - 2 _ 2
7 = ﬁ_ﬁ o (n go) _ 6 924, (n n°)6(2n+no) _ _ Dofn-n,) ‘o
1 n? n2
- 2 _ 2 _ 2
b = - 6 20 (nzno) Y 224, (n no)6(2n+no) _ (n+2n,) (n-n.) 5
ng n¥1? n3
and their covariance matrix :
2, 4 2t b
V;Z o Do (nTmo) g 40 , V}ib - (n+Z2no)” (n-no)” , >
n* . n® (2.4)
VS = _ o (n+2no) (n""no) Q, Auz
Zb 5

n
The variance of any quantity depending on Zz and b

is a linear combination of the elements of the matrix Vt =y 4 yS

If we assume n, and £ to be fixed (it is true for al-
most all detectors, execpt for bubble chambers) we are led to study
the dependence of ng and VEbon n (or L ) to evaluate the precision

of the standard estimator as a function of the measured length :

20 4
Vt = .& 0‘2 + fo (n nO) 2’2 A(},z
ZZ \
n n
2o gk
ng = __1.2.._ 02 + (n+2‘n0) (n no) AO(,Z

ndg? n®



The 0? terms decrease and vanish for n - « .
The Ao? terms increase and tend to finite limits sz = no> 2% Aa? = L% Ao’
and V:b = Ao? , which were to be foreseen, because for infinite n
the parameters are determined from the second part of the track (after

Lo ) with an infinite precisionm.

Now, in order to look for the best precision availa-~
ble on the parameters with the standard estimators, let us see whether
the total variances go through a minimum as n varies. With

3 92 A2 2 2
02 = Bl A7 bon o Lo” fo” (2.5)
02 Gz/no

one obtains the following conditions

- 3 1
for V;Z : {omne)” L
n? p?
3
o “Ileo 1
for ng : (n+2no) (n-no) = -
nons 02

.. t ..
Thus V;b has always a minimum, and VZZ has a minimum

for o > 1.

The dimensionless quantity © can be interpreted as
the ratio of L.Ao , scattering error propagated over Lo to the first

. g . . .
point, over /o> measurement error statistically compensated onn, points.
]

It is interesting to calculate an order of magnitude
of p in current experimental conditions. As an example, for (.01 rad.
length, momentum 1.5 GeV/e, one finds Ao~ t mrad. With Lo=Im , n.=25,
and g=0,5 mm, p=10 ; the condition p>1 1is then widely satisfied.

If o>>1 both minima of V;Zand V;b occur for-5§§i o 9_2/3
i.e. for p barely greater than n,. Then the track is probably measured

beyond this minimum.



This leads us to the notion of optimal measurement
length (eventually less than the available length), already used for
bubble chambers : using points beyond this length worsens the preci-
sion of the standard estimators. Unfortunately the optimal length is

not, in general, the same for Z and b.

Fig. ! represents JGZZ and vab as functions of %

]

for several values of p .

Let us now evaluate the scattering contribution to
<X2> H
o> N° = L (@Z+bx)?+ T [z2+bx, - al(i-ne)]?
i€ne 1>n,
Knowing the expressioms of <Z?>,<b*>,<Zb>,<a?>,

{«£>» and <ob> from (2.4), one finds <X2>S

3, 3 2p.2
<X2>S . Do (n—ne) AiYe) (2.6)
3n? g?
2.8 _ 3 2pm2 - 3
Hence <X > No (T.'I. ﬂo) Lo Aot - (n no) 02 (2.7)
n 3n* g2 3n*
<y?2>3
For fixed n., rises to a maximum (at n = 4n, )
9 p2 p?
i Bl = . 7 B
250 ne G.035 No
2.8 1
If o>>1, X = I with the optimal length.
[«]
s gith the same numerical va%ues as above, one finds
<yi> ) <yasm . .
E <.,l4while —KE—— = 1 . In other terms %—- remains in mean value

close to 1 (although its distribution may differ from the standard
one). Generally the multiple scattering introduces a relative increase
much smaller for the <X2> than for the variances of the fitted para-

meters.



2,2.3. Parabolic fit :

The calculations are more complicated, but quite ana-

logous. The equation of the trajectory is

y =

2

c
Y +ax +=x?

The parameters Y,a and ¢ are deduced from ;:

(from now on, for symmetric matrices, we write explicitly the upper

triangle only).

-

£
2

o

m
T ox.%y,
- %Yy
i

Hence the measurement contribution to the covariance

Taking into account the scattering only :

matrix of Y, a and %
M , ;
n_ n o2
n 2 '3 3 L
v oa g2 Eﬁ.gZ Ei ¢ 3
4
5
n s
S g
—n )2
z Y? = jEL%?ﬁLH % a
i
e )2
I ox, y? - L n°)6(2n+no) 224
i
5 x.2y (n-1no) % (3n%+2n.n+n.2)

230

36 30
L L2
192 _ 180
1.2 L?
180
Lh

(2.8)



(n-n )"

ne? (2n-5n,)?

4n®

. . , s
Hence the scattering contribution V

Ao?

2

bd

No (51‘10"211) (n-3no) (n+5no

) 2 1500 ¥ (5n¢~2n)

20’

(n=3n,) % (n+5n,)?

nﬂ

30n.2 (n-3n,) (n+5n, )

n® n® 2
225n,"*
| nlO 2’2
(2.9) -
t

. t . .
Here again VYY and Vaatend to foreseeable finite

.. . t
limits when nso (L3Ac? and Aw® respectively; the same as VEZ and V,
in the straight fit) while VEC goes to zero, Thus the uncertainty
of any kinematical quantity which is not a function of the curvature

only, does not vanish for n » = .

Studying the variance ofY,a and c as functions of n leads

in table 1 we give the variations of
VioLoAx
o

to solve algebraic equations ;
these variances, according to the value of the same parameter p =

as above (2.5).

This table shows the existence, in many cases, of

an optimal length ; again it depends on the parameter for which the

best precision is required. The optimal length lies in general either

just after 1, , or much higher.

t t t .
JG /6 and /6 as functions
cec

Fig. 2 represents

YY ? aa
of n/no ; there functions exhibit a remarkable feature : since V;Y
vanished for n = ; ne and V:a for n = 3n,, the curves of VV&Y

and Vg:a are tangent at these points, for any p , to the straight

lines (in log~log coordinates) obtained without scattering (pf = Q).
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The values of p chosen for fig. 2 extend higher than
those for fig. 1, because the value of g is generally smaller perpen-

dicular to the field than parallel to it, while A , of course, is the

same.
For <x*> , the same method as in 2.2.2 leads to
2.8 _ 3 2_ 2
<X > - (n No) (4n“-15n.n+15n, ) p2 (2.10)

n 12 n®

As a functionm of n , this %uantity reaches, for
n = 8.1?2 o , a maximum equal to 0.01647 %—' and remains less than
o]
0.01 g for n < 4n..

o

Thus the extra degree of freedom brought by the cur-

vature leads to a smaller X2 relative increase than in the straight line

fit.
<y2>° 1 ,
1f p>>1 , —— ¥ 3. for the length corresponding
Q
to the first minimum of vE . vt and Vt ( which is not necessari-
YY aa cc

ly the optimal length).

2.3. Scattering uniformily distributed along the track :

Fach matter slice between two measured points causes
random scattering. Since the scattering angles are independent, their
contributions to the variances and to<y?> are additive : so any confi-
guration of matter can be handled starting from the results found in
2.2. We will here study the case of uniformly distributed matter (like
Driiard (2)) : this 1is exact for bubble chambers and realistic for

many other detectors.

The covariance matrix and the <y?> will be obtained,

for a given value of n, by integration over m., considered as a con-
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. . 2 . .
tinuous variable . Sa is the mean squared scattering angle over a

length £.
2.3.2. Straight linme fit
From (2.4) we get :
s _ 1%a? m 2 4 _ ! 3 925 .2
sz = n fo dx x“(n-x) = o5 © 78
s (SO!.2 n 2 13
vS = N 2 2.11
bb 6 [o ax (2xin)® (n-x) 35 1o (2.11)
s 280 n 11
v = - 2 + —_—) - - 2 2
7h e fo dx x(2x+n) (n—x) 75 M4 da
If £ is fixed, the terms of v® increase with n (as
nk) while the corresponding terms of V' | given by (2.2), decrease
{as nk_a) : then the total variances have a minimum. One finds, with
% Sa
9= 3
t 3.44 t 4 m
F : . = e . .
or Vg Phin 7o 5 Va5 3 Vg (aggy)
(2.12)
t 3.14 t m
F : L b= = . . , — '
or Vbb Pmin Yaq ? (Vbb)mln 4 Vbb(nmin)
Fig. 3 shows the variation of VV;Z and Vvi ; the

b
shape of the curves is independent of the values of £ ,c , 8q.

With plausible numerical values (momentum 1.5 GeV/c,
L = 5 em ,0 = 0.5 mm, rad. length = [00m )one finds‘FL-= 6.7, whence
q
the optimal lengths : |.i5m for Z and 1.05 m for b . So the measu-

rements may often exceed the optimum.

|V§b’ has also a minimum, for n=3.27//g .Hence for

any functicn of Z and b, the optimum lies close to 3.25/ /9 .

From (2.6) the calculation of<y?> gives straightly :

2 2 3 _ 3 2
<X2>S - Leda fn dx x* {(n—-x) _ nt q
352 0 nd 420
(2.13)
<X2>5 _ al qz

n 420



In pratical conditions the relative increase of <y2»
due to the scattering is negligible compared to that of the variances.
When n + = it behaves as n3 instead of n4 for the variances . For
the optimal length (n=3.25/Vq ), <)(2>s = 0.266 while <y?>™=n :s0 the

mean squared residual remains nearly the same as without scattering.

2.3.3. Parabolic fiE :

. C .
For the parameters &,a,z one obtains :

niit _ntl n
630 60 168
5 < 3 &n 3
v — a-2 il - 7 4
¥ 2 . T I (2.14)
5 -
I e o l4ne~

. . k .
Here again the dependance on n is n while the cor-

. L I k=4
responding terms of V behave as n .

YYY , Yaa and YYa behave like VZZ , Vbb and VZb in the
straight fit. The optimal lengths are respectivelv 6,394 , 7.094°C
and 6.82,,g, i.e. about twice their values for 7 and 2, 1f the preci-
sion is the same in both directions (as already mentioned, manv de-
tectors have higher precision in the curvature plane, and the order

of the optimal lengths mav be reversed).

wn

The ¢ parameter appears to be quite different : V

ce
is a decreasing function of n, and there is no optimal length fer
the curvature. When its uncertainty has the highest weight in the
Kinematical analvsis, the track should be measured over the Zreatest
possible length. In other configurations it mav be preferable to trun-

cate some tracks.

This 1is true also for zecmetrical questions related

to the position uncertainty (e.g. attaching & track te a vertex).



The satisfactory solution would be to perform several
fitson each track, in order to optimize separately the parameters : but

it would increase substantially the computation time, and the covarian-—

ce non-diagonal terms could not be extracted any more from an already

calculated matrix.

<y®> can be evaluated in the same way as in 2.3.2. :

<X2>S - 22602 fz dx xs(n—x)3(?22—150x+15x2) - g;g;
5 2
n-g¢
2.8 3.2
Hence <Xn> - 2530 (2.15)

The numerical coefficient is smaller than in (2.13)
because of the extra degree of freedom., For the optimal length asso-

ciated to Y and a ( n>6.85/vq ), <x?>°=0.874, negligible compared to
<X2>m ~n

3. THE OPTIMAL FIT : RECURSIVE_ METHOD

3.1. Description of the method :

3.1.1. General features :

The track is measured at abscissas X 3%y evee Ko oo
Knowing the best estimators of the track parametersat x , starting from
the measurements at Xy X g ceee Xy o We want to define the best es-
timators of the parameters at x starting from the measurements at
s Ky o0 oeee Xy o Here we have to do with the true parameters, i.e.

including the effect of the previous scatterings.

This involves :

- scattering between L. and X s that is, loss of
informationw.r.t the simple extrapolation of the
parameters and of their covariance matrix.

- extra information thanks to the x _, measurement.

We suppose the distance an between X1 and X to

be short, so that the scattering affects the angles but not the posi-



tion : in other terms we can consider that the matter is concentratcil
at the measurement points, and that the track can be assimilated to
a broken line ; anyway, one can introduce intermediate scattering
points where no measurement is made. This assumption simplifies the

calculations, but it is not essential to the method.
We will first describe this (backward) recursive
estimator for tracks in a plane, parametrizing each elementary segment

as a portion of parabola (with the same notations as in sect. 2).

3.1.2. Accounting for the scattering :

t t t
Let Y. oo 2, and ¢, be thetrue values of the para-
meters at X s after scattering ; the true values at this point befo-

, t t t . p .
re scattering are Yo an+an and c , where ¢ 1s a quasl-gaussian

variable of variance 802 . Let yOpt, aOpL and c°PPbe the best estima-
t t nt . B nm m m
tors of V., s &, and ¢, in terms of Y, o yn+l"" . {(measured coor-
dinates at X s X qeees Xy Y and V their covariance matrix. These
n

estimators, as random variables, are clearly independent of g . Then
- t .
they are also the best estimators of yt ’ at+@ and c with a co-
n n o n

. . *
variance matrix V equal to q1where ﬁu; has been added to the Vv
n aa

term.

In the framework of information theory : if a%Ptis

an efficient estimator of at , 1t is also efficient for at+a
n n

3.1.3. Propagating to the previous peint

The transformation from the parameters at X {before

secattering) to those at X (after scattering) 1is one-to-one, without

-1

information loss. Theny' , a' and ¢’ defined by :
n-l n-l n-1
- - - _
[ [ §x 2 opt
' - .
Tn-1 ! 6Xn - “n
2
a' = 0 1 -8x 2Pt (3.1)
n-1 n n
t
€ n-1 0 0 I S
| | =
\_—_w—-,__’
D



are the best estimators of yt , at and ct in terms of ym , ym
o n-1 n~1 n—1 n n+l1?
cee Yy oo Their covariance matrix is
0 0 0
Al = D ( V. + [0 8a? 0 >y ot - D V* Dt
n—1 n n n n - n Yn n
0 0 0 {(3.2)
3.1.4. Adding the previous measurement :
Now we add the information brought by y:;l . This
information concerns yt » at  and t , and also o, which 1is
n—1 n-1 n-1 n

not useful for our purpose (it could perhaps be used for particle iden-

tification at low momentum).

The likelihood of the whole set of measurements

( yE sas y? ), as a function of y, a , ¢ (parametersto be fitted
at x _1) is given, up to a constant factor, by exp - % Apt(VI'_l_l)_1 Ap

n
where the components of Ap are y*yé_l,a—aé_l and c—c;_l.The likelihood
of the y:_lmeasurement is simply exp - (y—y:_l)z/Zcz.

Since the errors are independent, the likelihood func-
tions can be multiplied ; the maximum likelihood is obtained by mini-

mizing the quadratic function :

I 2
t -1 (y_yn—l)
Apm (VI ) Ap + ——— (3.3}
n-1 2
o)
with respect to y, a , c .
The best estimators yoPt . aoPt and Copt are then
n-| n-—1 n-
solution of the linear system :
- _ _ - rym g T
1 ot n-1 “n~1
52 9 0 YTV ;
g
-1
' _at =
(Vn—l) + 0 0 0 a=a' 0 (3.4)
ot
i 0 0 OJ SRCA 0
L i - 4




_]6_

and their covariance matrix :

rl - -1
= 0 0
- vyl 0 0
v, o= o _ )+ |0 (3.5)
0 0 0

Equations (3.2) to (3.5) can be written with the
information matrices (i.e. the inverted covariance matrices, in the

gaussian hypothesis)

(3.2) gives :

0 0 0
t.—1 =1 2 -1
' = D
In__1 (Dn) (In) + 0] Sun 0 ( n)
0 0 0
\5_m_________\,’_ﬁ__“_ﬁ______,,
- = In*
with l Sx 6Xn
2
_1 _
(D ) = 0 1 an
0 0 1
Moreover
o o o]\ 00 0]
* iy Ga;
= (1)  +|06a? O = I - ~—1 [0 1 0f I
n o 1+6u§(1n)aa
0 0 0 0 ¢ 0
) -
So? (In)Ya (In)Ya(In)aa (a )Ya(In)Yc
s S
n 2 2
1+6an(1n)aa . (In)aa (In)aa(ln)ac (3.6)
2
L (In)ac
S -

information loss
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Equation (3.4) becomes

[ m '
1 — . ] Y-t n-1
520 0 Y V51 o2
oH™ 1 @)™+ [0 0 o] |jaal ] = 0 (3.7)
n
- 0
————— 0O 0 0 Ccn__l i
In - | ) i
n-1
and (3.5) gives
1
72 0 0
1, = 1! . 0 0 0 (3.8)
n— n-
0 0 0
e P

information brought by the measurement

This formulation avoids the explicit matrix inver-

sions involved in (3.4) and (3.5).

Table 2 summarizes the recursive algorithm.

This can be done by two practically equivalent

means !

~ Using the last three points to calculate y, a , ¢
at Xgo o and their covariance matrix (including the scattering con-

tribution at Xyen and X1 if necessary).

- Starting the recursion at the last point, which
defines Y with variance g2 , but lets a and c fully undetermined
one can assign to them approximate initial values and very large arbi-
trary variances : then the recursive algorithm can be applied without
risk of matrix singularity : the information brought by YEFZ fits a

and c at Xy p> and the fitted values are nearly independent of the

initial ones.

3.2. Generalizations

We consider now a track in 3-dimensional space with an inhomo-

geneous magnetic field : it is defined by 5 parameters (e.g. v, 2, a, b
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and 1/p at fixed x). Moreover the measured coordiniics are not uiece:,

sarly v or z at fixed x.

We describe hereafter the 3 stages of cach step of the
recursion. Instead of the azimuth ¢ and the dip A , we continue to
use the slope parameters a=py/px=tan¢ and b=pz/px: tani /cosd
this avoids trigonometrical calculations. We use also : d = Ze/p

(B.d is then the curvature for a track perpendicular to the magnetic

field).

3.2.1. Scattering at X

Tt affects only A and ¢ (or a and b). Let in be the

number of radiation lengths X, crossed from x_ . to X For a homogeneous
medium :
X_—X 5x
n n-l n S 2,2
= = =+ +
Sn X, cosA cosé Xo I+at+b (3.9)

The scattering angles o and B 1in two perpendicular

planes containing the track direction are independent random variables
KZ
PV
scattering angle in this plane represents exactly the wvariation of A

of variance 6@; = ( )gn. If one of these planes is vertical, the
and the other one the variation of ¢ multiplied by cosh ; with the
parameters ¢ and ) fo account for the scattering consists in adding

Sal/cos? i to V.. and Sa? to V
n T

o AL

With the parameters a and b, one finds easily, that

one has to add :

(1+a”+b%) (1+a”) §ol to Vi
2,12 2 2
(1+a%+b%) (14b%) da? to Vi (3.10)
(1+a2+b?) ab 602 to V
o} ab

In terms of information matrices, we get

_ 11 -1

0o 0 0 0 0
0 0 0 0 O
o 1y s
L= O = L@ b 10 0y 00 (3.11)
' o 0. v 0
LO 0 0 0 0
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1 + a ab

where A = (1 + a2 + b))
ab 1 + b

The matrix inversions can be simplified in the same

way as in 3.1.4. :

0 00 00
x 000 00
I = I =-6821 |0 07 4" SO0l I
n nnoo;a.on
L (3.12)
00 0 0 o0

with

| I
— - 2
CI - A + CSOin I
X

3.2.2, Propagation from X

n-1

The track extrapolation from a point to the previous
one must be accurate : the cumulated error over the whole length of
the track should remain small with respect to the position uncertain-
ty resulting from the fit. Any suitable method for this extrapolation
allows to calculate also the (5%5) matrix of derivatives analogous to

Dn in (3.1), either by analytical differentiation, or by finite diffe~

rences.

As a matter of fact, in the left~hand side of the
equation which should generalize (3. 4), the matrix V' _j can be cal-
culated with an approximation of D, > assuming the f1e1d B to be
constant along the track between x| and X . If the curvature is

not too strong, we obtain for the parameters ¥y, z, a, b and d :

] 1 0 —6xn+F16X;/2 Fzéx;/z Fgéx;/Z
0 1 Glsx;/z —an+G25x;/2 Gsﬁx;/z
D = 0 0 -F16x_ ~F28x_ ~Fybx_ (3.13)
0 Q0 —Gléxn ]—GZGXH -G35xn
0 0 0 0 ]
L

2 —
with :  Fj e[be+abBy—(1+a2)Bz] s Fi = d[aFs/e+e(bB ~2aB )]

2
F, = d[bFs/e +e(BX+aBy)]

@«
w
|

e[~an+(l+b2)By—abBZ] ; Gi= d[aca/e2~e(BX—sz)j
Gy= d[ng/e2+e(2bBy—aBz)]

2,4.2
where e? = 1+a?+b
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3.2.3. Addition of a measurement :

In many cases each measurement consists in determi~—
ning y or z, or a combination t=Ay+lUz , at a given fixed x. Here it is
useless to build space points from several raw measurements : such a

procedure implies sometimes a loss of information.

The likehood of measurementtnlas now, in the gaussian
n=

approximation :
L Oyt
P~ =
n
and the linear system (3.4) becomes
[ 2 ] [ ! 7] i m ' _ Y i
A AN O 0 O Yy, )\(tr%_l )\yn_l Uzn_l)
2 . | =y _ 1
-1 I Awut o000 2 zn*l . u(t'n-l yn—] Uzn—])
vy T+ — 0 0 0 0 0 a-a' = — 0
n-1 o2 n-1 g2
0 0 0 0 0 b—b;_] 0
At
(0 0 0 0 0] Lc1 dnq']J L 0 ]
(3.14)

Of course, if y and z (or two independent combinations
of y and z) ara available at the same x, both measurements can be inclu-

ded together in one equation like (3.14).

If the information refers to a non linear combination

of y and z, it can generally be linearized around the measured values.

If the measured quantity depends also on x, especially
in the case of optical measurements, one can transform the raw informa-
tion into information at fixed x : this transformation is a projection
along the direction of the track : so it requires a first approximation
of the track to determine an approximate abscissa of the measured point

and its direction at this point.

As an example, let us suppose we measure Y at fixed X,
with error ¢ , in an orthogonal frame XYZ defined in the 1lab. by the

unit vectors (u_, u_, u_) for X direction, (v., v , v_) for Y direction
x’ Ty’ Tz x’ Ty’ Tz

and (w , w , w ) for Z direction.
x' Ty z
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This can be expressed by assigning error ¢ to Y and

infinity to Z, and represented by a "standard uncertainty strip”.
¥y P ¥y y

(the origins of the frames are separated for cla-

rity ; in fact they coincide).

To express the error matrix in (y,z) variables at
fixed x amounts to project the points of the (YZ) plane onto the
(y z) plane along the track direction, i.e. the vector (1, a, B) :
in the gaussian hypothesis the projection of a standard strip is also

a standard strip.

This projection is expressed by :

= Z—— -+ —_ -
v vy Y + Wy a(va WXZ) (vy avx) Y + (wy awk)z

N
H

v, Y + wy zZ - b(va + wa) (vz—bvx) Y + (wz—wa)z

The direction of the projected strip id defined by
the projection of the Z direction, i.e. (wy—awx,wz—bwk) in the (yz)
plane. In this plane, the variable t perpendicular to the strip is

(up to an arbitrary factor) :

t = (Wz—wa)y - (wy-awx)z , L.e.

t = (vy—avx)(wz—bwk) - (vz—bvx)(wy—awx) Y
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or t = (u +au + bu ) Y (3.15)
x oy z

whence the variance of t

2 2

2
Ot = (ux+auy+buz) g (3.16)

Then equation (3.14) can be used.

An optical measurement with a camera (as in bubble
chambers) consists in projecting some points of the track onto a pla-
ne, from a fixed sighting point. It can be handled in a similar way :
indeed, even if the projection is not orthogonal, one can define lo-
cally a frame XYZ in which the error matrix is diagonal and OZ infi-
nite (Z is the sighting direction). Let &, 8 , ¥ be the directicn
cosines of the track in this frame. From the point of view of the
information on the track, the elliptical uncertainty cylinder in the
Z direction, with half-axes OX and 0_ , is equivalent to an uncertain=-

Y
ty strip in any plane containing the Z axis.

By choosing the (YZ) plane, the projection Y', Z2'

of X, ¥, Z onto this plane according to the direction (g, 3, v) reads

Y'=Y—%X
(3.17)
z' =z~ Lx
o
Hence the wvariance of Y’
o2, = g2 + (ﬁ)2 ol (3.18)
Y' Y o X :

So we are led back to the previous problem.

When several measurements are made close together {e.g.
in guccessive planes of a MWPC), theyv can be included in the same step
of the recursion. For example, let us assume that beside the measure-
ment at x, the coordinate y is measured with variance o°at x + Ax

(Ax small). Let y', z', a’', b", d' be the valuegof the parameters at X,
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fitted from the down stream measurements.

In order to calculate the contribution of the imea-

surement ym at x + 0x to the log. likelihood of the set of parameters

(v, z, a, b, d) at x, we express y(x + Ax) as a function of these
parameters :

y (x +Ax) =Y (v,z,a,b,d)

and then we write :

oY
Y(y,z’a’b,d) = Y(y,,z|ﬁa'5b'ld') + z_

ap‘ (Pl‘P;)

1
where

{pi} = y,z,a,b,d
Hence the log. likelihood :

[y (x+ax) -y 2

2 g2

[Y(y'sz'sa'sb'!d')_ym + L a_ (p_p1)12
; 9p; 1L

2 o?

Thus accounting for this measurement leads to add,
in eq. (3.14}) :

1 Y ay .. . .
92 o, Tp to the ij term ¢of the left hand side matrix
P; Pj
1 3y
—p
o] Bpi

m
[Y “Y(Y',Z',a',b',d')lto the i term of the right hand side vector

Since Ax is small, we need merely an approximate
expression for Y, e.g.

Ax?

Y(y,z,a,b,d) =y + a &x + d Vl+a2+b2 [bBX+abBy~(l+a2)BzI 5

The derivatives

3 can even be reduced to their
simplest expressions : t

Y o o, dY 3y

dy > Dda

_8r
* 3z » - 3a - 9
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This treatment extends straightforward to  several

measurements of any combination of y and z in the neighbourhood of x.

3.3. Extension to energy loss :

The energy loss can be taken into account in a natural way :
it is enough, in the propagation stage 3.2.2. , to add a suitable quan-
tity to the d parameter. Moreover, it is possible to introduce a
(gaussian) uncertainty on this energy loss, as in 3.2.1., by adding a

contribution to V in the same time as vaa’ v

dd bb and Va at the scat-

b
tering stage.

4. COMPARISON _BETWEEN THE OPTIMAL FIT AND THE_STANDARD FIT :

4,1. Introduction :

Our aim is to determine the gain in precision on the para-
meters, brought by the optimal estimators, with the same model as in

2.2, and 2.3., and the same notations.

In the optimal fit, the variances of the parameters cannot
increase as measurement points are added (in other terms, addition
of measurement cannot cause a loss of information). Thus, for n > o=
they must tend towards some limits (possibly zero). Again we use the
gaussian approximation : so the covariance matrix V of the fitted para-

meters is the inverse of the information matrix I.

4,2, Scattering at one point :

4,2.1. Principle of the calculation :

The expressions of the measured variables (2.1) show
that the measurements after L, are independent of those before L,, so

that the total information matrix on the parameters (Z and b) at the



- 25 =

origin is the sum of the contributions brought by the two portions of
track delimited by the scatterer

For the second portion (after L.}, we calculate first the
information on the parameters at x = L, (including the effect of the
scattering uncertainty), and then we propagate it back to x = (. At
x = 0 we add the information of the first portion (before L,), where

no scattering uncertainty occurs.

4.2.2. Straight line fit :

For the parameters at x = L, after scattering, the se-
cond portion provides an information matrix which can be calculated

with the standard estimator defined by (2.2)

2
1 fn %1—9”
I;(Lo,) = 52 An? o, with An = n-n.
P _5-_21

Hence the information matrix on the parameters at

x = L, before scattering, following the arguments developed im 3.1.2.

=1

0 0
* -1
I—Z(Lo) = (I2(Lo)) +
0 Ao?
1242 6Anl
- Ao 1
g L0GHD) .. bin?R?
with An?%2502
g =————
Propagating this information to x = 0 gives
1 0 * | R PP
I} (0) = 15 (Lo)
Lo 1 0 1
o | 1242 [(12+47)no+6An] L
EREIEES) (4.1

G e [(1247)n%+120.An+440%] £°



_26_

The first portion gives straightly an information
on Z and b at x =0 :

-

a n2g

1 ° Z2
I;(0) = 32 32
nsl

e 3

Hence the total information matrix on Z and b

3(4an+1)+12n  z(n+1)+6n?
Io = I,(0) + 14(0) = —Re

402 (3+%) c(n*%)“m"’

(4.2)
with : = I

I,  gives the covariance matrix of the optimal esti-

mators.

The optimal errors on Z and b are represented on

fig. 1 together with the standard ones, in order to show the gain in
precision.

We will calculate explicitly their limits for n -+ w
(i.e. N >« ) with n, fixed. Remarking that ¢ = p2n? (p? was already

defined by (2.5)), we keep the first two terms in powers of n :

n T] (n‘l'])ﬂog,
Io o~ —°
) P4 20 (4.3)
4o PR (n"'? ""5‘2) nog

With the terms in 1 only, I. would be singular : this
reflects the fact that the combination Z + bLe is known, from the se-

cond portiom, with an infinite precision, whereas the precisison is 1li-

mited by the scattering for any other combination.

At first order in 1/n, the covariance matrix is :

(4.4)
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whence the limits for n - « :
2
o _ 2 o - o )
VZZ = Lt Vbb a (_]_+_1_) (-3
(=] p2 3

This quantity is always less than 3¢g%/n..

Generally'vgbis small compared to the minimum of the
standard variance (cf. 2.2.2.) ; however, as it can be seen on fig. 1,
the convergence of (Vn)bbto its limit is very slow, and the gain with
respect to the standard fit applied up to the optimal length, remains

often moderate.

4.2.3. Parabolic fit :

With the same notations as in 4.2.2., we have now for

C .
the parameters Y, a, and 5 after scattering :

[ An? And oo |
R
] A A“
I (L) = 2 ~—§—22 %5&3
g
| e
whence : -
o o o\
* -1 )
I,(Le) = (Io(L,)) + 0 Aa? 0
0 0 0
L2
1 0 0 I Lo =5
I4(Le) = | Lo 1 O I,(Lo) 0 1 Lo
L2
= Lo | 0 0 1
and 3 a n 2}
Neo —252, —'52
4
1,(0) = =+ Be g2 B g
g? .
e Do gu
' 5

We do not calculate explicity I, = I, + IJ
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For n + «» one finds :

2
oo g
v. =0 ; v, = L3V =

ce YY aa (4.6)

no(éz+ éﬁ

i.e. the same limits as for Z and b in (4.5).

This can be understood in the following way : with an
infinite measured length the quadratic term is known without uncertain-
ty from the second portion ; then it can be subtracted without informa-
tion loss and the fitting procedure is reduced to determine Y and a in

the same conditions as Z and b previously.

The comparison between the optimal fit and the stan-
dard one is illustrated on fig. 2. For p > 16 the gain on Y and a may be
large w.r.t. the minimum of the standard fit, if the measurements do
not extend up to the second minimum ; the gain onm ¢ is large in a wide

range, although it wvanishes forn = o« .

4.3. Uniformly distributed scattering :

4.3.1. Principle of the calculatjon :

Thanks to the formalism developed in 3.1., we can
give a recursive expression of the optimal information matrix. Let T
be the matrix obtained with n points, for the parameters Z, b or Y, a,
-é%, at the first measured point ; let Vn be its inverse, i.e. the co-
variance matrix of the optimal fitted parameters. If the track has n + |
measured points,the last n points give the information matrix In for
the parameters at the second point ; then the first point can be added

within a step of the recursion : so we obtain In for the parameters

+1
at the first point.

4.3.2. Straigtht line fit :

The formulae analogous to (3.2) and (3.5) give in this

case !
~1i "1
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. 2 l
! 0 Lo & T2 T T VT * L 1o 0
n 2 2
Lo 824 (L) | - (1 )2, 0 1 0 0
(4.8)

This expression suggests an expansion of In in po-

2 .
wers of Su ; at order zero we find :

10 1% Lo
I - I g
ot o] " o 1) " 0
i.e. _ I
Tazz = Tgz * 32
Toedzy = T * 2 Oy
(4.9)
- 2
ey = Ty T 2% Ty + 200,

This gives the usual information matrix in the absence

of scattering :

0 n?g
I(0) 1 2
n T ¢? n’4? (ef. (2.3))
ee 3
Then we expand (4.8) at first order in §g?, replacing
M. . . , .
In by Iic) in the §y2 terms. So we obtain the recursive relations satils-—
fied by the first order approximation Iil)
1y _ (D S PSP (+)
(In+] In )ZZ - g? b (In )ZZ
(1) _ (D - (1} _ xnz 10D (0) (0
(In+l In+l)Zb = 4 (In )ZZ S0 (In )Zb [R(In )Zb+(In )bg]
_ _ ez (1) a2 r CO) (0) 2
(In+1 In+1)bb = b (In )ZZ v 2 (In )Zb S LQ’(In )Zb+(In )bb]
These relations give successively :
m, _ ok _ 2B
(T gz = 32 (n7 9 35
(1, _ & 0% _ 13 5
I, Vg = 2 (77300 ™)
(1) _ 2  Ei _ 1 2 _7
Qg Dy = o2 (7734 ™)
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or, with ¢ = q2 n4
2
£ n<l 13
n (1 =35 7 U =755
? o= % s
n*f 11e
-t 4.10
.. 3 (1 70 ( )

This approximation is valid so long as ¢ terms in
(4.10) are small compared to 1, what can be summarized by e£<<20 (of

course this implies g%<<1 ).

Since g 1is propertional to n4, (4.10) remains a

. . 1
t £fI t = .
good approximation o L Up ton 7€r

By inverting Iél) one finds the approximate covarian-
ce matrix :
1 £ 1 lle
- (4 * 168 277 6t 31g)
v ok (4.11)
n 13e

1
n38? (12 + 35 )

namely the covariaace of the standard estimators (cf

(2.11)). Thus the standard fit is quasi-optimal wup to n = Vér , and
q
it is useless to search some other estimators (e.g. giving to the mea-

sured points weights decreasing with n}.

For higher values of n, we know only that (Vn)zz and

must decrease and tend towards finite limits ; likely, (Vn)Zb

vV )

too. 50 we expect the matrix Vn to have also a limit V for n + «

According to (4.8), v should verify :

10 o o1\t 1 2 Lo
Vv = v o+ + |
% 1 0 St 0 1 0 0,
) ) (4.12)
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this can also be written as

Lo\ -0 0

vio |9 = vV o+
0 0 1 0
or o 5 a 2 v 3

Vo Vi Vzz'zw

v o+ )
2

P+ VZZ/O i VZb .

(4.13)

Hence a system of three algebraic equations in Voo

VZb and Vbb’ which becomes with

7 7
v A
0.2 02

0'2
| Vbb

O2

If q is small, the sclutions can be expanded in powers

o
o = q“(l—U)(Z—U)Z
v2 = qz(]“u)
2 u
w = q (I+'v)
of JE
= 3
Voo vV 2¢% 2 8o (
Vzb = -c 6? (1
H 2 0 b
LN 9 1

Fig. 3 shows the compirison between the standard

certainties and the optimal ones

q+ . )
q+ ... )
q + ) (4.14)

un—

the gain remains moderate as far as

the measured length is less than the optimal length defined in 2.3 for

the standard estimator. It is interesting to compare the limits pre-

viously found to the minima of the standard variances, which were, ac-

cording to (2.12)

min

sz = )’5'_‘\-0 (1_38 c(

Min - 43

vbb = 1.55% /_J' o
£
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Thus, for q << I, the gain of the optimal fit with
respect to the standard fit applied to the truncated track, remains

always limited, whatever the measured length.

é.3.3;_Parab01ic fit

. c . .
With the parameters Y, a and 5 the recursion rela-~

tion becomes

-1 R ]

] o _
1 0 0 N 0 0 Loy 520 0
I . =tg2 1 ¢ I +]0 82> 0 0o 1 £ { + 10 0 0

n+1 Q'z n
—E,QO 0 0 0O 0 0 1 0 0 0]
(4.15)
(1)

The first order expression V for small n is again

n

equal to the covariance matrix of the standard estimator, which 1is then
]

uasi-optimal up to n =
q P" P ;ﬁf
For n > «© | (Vn)CC must tend to zero, since the varian-
ce of the standard estimator already vanished. Thus, for the same reasons
as discussed above {(cf. 4.2.3.), (V) (V) and (V) have the same
n’ aa n’ ya

nYY,
limits as (Vn)zz, (Vn)bb and (Vn)zb respectively (given by (4.14)).

The minimal variances of the standard estimator are

here :
min  _ 3
VYY 1.820 /fr 2 Sa
. 3
yoR . 20159 /G Sa
aa £

This shows that the gain of the optimal fit w.r.t.
the "truncated" standard fit is potentially bigger than without curva-
ture. However, for a given value if q, (VH)YY and (Vn)aa converge much
1 idl h L in i '

ess rapidly than (Vn)Zz and (Vn)aa so the actual gain is generally

small, as it can be seen on fig. 4.
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5.1. Description of the experiment

We used real events from the C.E.R.N. WAI3 experiment,
which was realized in the Omega spectrometer equipped with optical spark
chambers ; its aim was to study hadronic large-—angle reactions giving in
the final state two charged particles or two neutrals decaying in charged
mode ; detailed description of the experiment can be found in (3) and (4).
Fig. 4 summarizes the measurement apparatus: in their measured sectiom,
the tracks crossed mainly the spark chambers (0.06 L. for the whole set

ad
of chambers) and a | cm thick scintillator S6.

We used events produced at 3 GeV/c, and we did not apply
kinematical cuts : the momenta of the reconstructed tracks ranged from a

few hundred MeV/c ; the outgoing particles were not identified.

5.2. Programmation of the algorithm

The recursive method was programmed in the following way

- All matrix operations were written explicitly, without subs-
cripted variables or loops, in order to save computation time (this is

possible because all matrices involved have the same dimension).

- The propagation between two points (generally separated by
6 to 10 cm) was realized in two steps by a fourth-order Taylor expansion
of the trajectory ;:the propagation of the information matrix used the
second order approximation (cf. (3.13)). The magnetic field was assumed to
be uniform between these two points. In most cases this calculation was
much too accurate ; it was needed for low-momentum particles emitted at

large angle.

Every time the distance between two measured points exceeded

10 em, dummy points were inserted.

- The variances of the scattering angles were calculated in two

velocity hypothesis : ultrarelativistic (valid for rt ) and proton.

- The measured points were extracted with their weights defined
at fixed x, from ROMEQ (standard reconstruction program for Omega events),
just before the final fit, so that both fitting procedures worked on exac-

tly the same input.
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- The starting value of the curvature parameter was esti-
mated with three points (at the beginning, in the middle and at the
end of the track) ; for the slope parameters, the last two points
were used, with a curvature correction. As a matter of fact, the fitted
values do not appear to depend stongly on the initial ones. After 3 or
4 recursion steps, the gaps between the extrapolated trajectory and
the measured points are compatible with the measurements errors, and
moderate deviations on the starting values are automatically corrected :
for example, estimating the slope without curvature correction between

the last two points has no appreciable effect on the fitted values.

The computation time for ome recursion step (propagation +
measurement + scattering) amounted to about 360 us on CDC CYBER 750,
equivalent to 160uson CDC 7600 (the computation of the magnetic field
is not included). The time for a whole track is obviously proportional

to the number of points on this track.

5.3. Test of the precision :

From the parameters fitted at the first measured point we
extrapolated the tracks backwards to find intersections, and we deter—
mined the points of closest approach between each pair of tracks with

opposite sign.

Fig. 5 shows the distributions of the minimal distances
obtained with the standard program ROMEO, and with our algorithm (for
both mass hypotheses).

The precision is clearly improved by our method. The improve-
ment is not very strong, but anyway the theoretical gain that we could
deduce from sect. 4 for this experiment, is not enormous. Moreover there
was matter accumulated around the vertex (the hydrogen target was surroun-
ded by scintillators) which worsened its geometrical precision, and for
which optimization cannot help. For the same reason, no appreciable

improvement can be expected in the kinematical resolution.
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6. _CONCLUSION

The standard fitting procedures, applied to slow tracks
measured over a big length, and/or with high accuracy, lead to im-
portant losses of precision on the geometrical parameters. They can
be improved by taking account of the measurements up to a certain
length only ; this optimal length can be evaluated from analytical
approximations of the variances. In many cases, especially in a ho-
mogeneous medium, this "truncated” fit is not far from being optimal.
Its main drawback is that the optimal length depends on the choice
of parameter for which one wants the highest precision ; moreover
it was calculated assuming gaussian independent measurement errors,
and we do not know how it would be modified by small uncorrected

geometrical distorsions, or by non-gaussian errors (e.g. in a M.W.P.C.).

The optimal fit (without information loss) is usually
realized by calculating the whole covariance matrix of the measurements,
or by adding extra parameters to describe the scattering (1) ; these
methods involve handling big matrices. In this paper we described a new
implementation of the optimal estimator : the parameters are fitted
backwards by introducing the measured points one at a time from the end
to the beginning of the track. The elementary steps are thus : inclu-
ding one or several raw measurements, and/or one elementary scattering :
from one point to the next one the parameters and their information (or

weight) matrix are propagated by a local polynominal parametrization.

Such a procedure is very flexible : it can be applied to
various types of detectors, and especially to composite detectors. More-
over it does not require more computation time than the standard ones
(perhaps less) ; contrary to the "big matrix" optimal methods, the time

used is merely proportional to the number of points.

The implementation of this algorithm on real events shows
an improvement of the geometrical accuracy ; its order of magnitude cor-
reésponds to what could be expected. The fitted values of the para-
meters appear to be stable with respect to the starting value chosen
at the end of the track : thus no iteration is needed to obtain the
best estimate ; the algorithm stabilizes after 3 or 4 steps along the

track.
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Finally we point out that this method, in some configu-
rations, could be able to perform at the same time the pattern re-—
cognition and the geometrical reconstruction of the tracks, since
it gives in ashort time the best extrapolation of a track candidate

built up with the most extermal points.

I thank Professor M. Froissart for helpful discussions

and suggestions.
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FIGURE CAPTIONS

Fig, 1 to 4 :

Errors on the track parameters (position and slope at first

point, and eventually curvature) as functions of the measured length

for both standard and optimal estimators :

1. straight track
scattered at one point

2. curved track
3. straight track
4

with uniformiy distributed scatteri
 curved track ‘} v stributed scattering

Fig. 5 :
Layout of the WAI3 experiment in the Umega Spectrometer,
Fig. 6 :

Comparison between the standard fitting method of ROMEQ and the
recursive implementation of the optimal estimator : distance, at the point

of closest approach, between two tracks extrapolated backwards to the ver-

tex.
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TABLE 1

VARTANCES OF THE STANDARD ESTIMATORS
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TABLE 2

ONE STEP OF THE RECURSIVE ESTIMATOR

Estimator Information matrix
. opt opt opt )
at 2, * Yy 4n ¢n In
scattering
at x
n
opt opt opt -1 1
. = I + A
at x_t Y, a_ c, I ¢ I o)
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In the parabolical schematization :
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